Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Ther Drug Monit ; 44(1): 166-197, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-2114574

ABSTRACT

PURPOSE: The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS: We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS: More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS: TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.


Subject(s)
Antifungal Agents , Drug Monitoring , Antifungal Agents/pharmacokinetics , Drug Monitoring/methods , Fluconazole , Humans , Itraconazole , Voriconazole
2.
Mar Drugs ; 20(3)2022 Mar 20.
Article in English | MEDLINE | ID: covidwho-1760762

ABSTRACT

The world is already facing the devastating effects of the SARS-CoV-2 pandemic. A disseminated mucormycosis epidemic emerged to worsen this situation, causing havoc, especially in India. This research aimed to perform a multitargeted docking study of marine-sponge-origin bioactive compounds against mucormycosis. Information on proven drug targets and marine sponge compounds was obtained via a literature search. A total of seven different targets were selected. Thirty-five compounds were chosen using the PASS online program. For homology modeling and molecular docking, FASTA sequences and 3D structures for protein targets were retrieved from NCBI and PDB databases. Autodock Vina in PyRx 0.8 was used for docking studies. Further, molecular dynamics simulations were performed using the IMODS server for top-ranked docked complexes. Moreover, the drug-like properties and toxicity analyses were performed using Lipinski parameters in Swiss-ADME, OSIRIS, ProTox-II, pkCSM, and StopTox servers. The results indicated that naamine D, latrunculin A and S, (+)-curcudiol, (+)-curcuphenol, aurantoside I, and hyrtimomine A had the highest binding affinity values of -8.8, -8.6, -9.8, -11.4, -8.0, -11.4, and -9.0 kcal/mol, respectively. In sum, all MNPs included in this study are good candidates against mucormycosis. (+)-curcudiol and (+)-curcuphenol are promising compounds due to their broad-spectrum target inhibition potential.


Subject(s)
Antifungal Agents , Biological Products , COVID-19 Drug Treatment , Mucormycosis/drug therapy , Porifera/chemistry , SARS-CoV-2 , Animals , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacokinetics , Antifungal Agents/toxicity , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacokinetics , Biological Products/toxicity , COVID-19/complications , Coinfection , Fungal Proteins/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Mucormycosis/etiology , Toxicity Tests, Acute
3.
Molecules ; 26(22)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1524087

ABSTRACT

A series of methyl ß-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich's ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Galactose/analogs & derivatives , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacokinetics , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Galactose/chemistry , Galactose/pharmacokinetics , Galactose/pharmacology , Gram-Positive Bacteria/drug effects , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/enzymology , Static Electricity , Thermodynamics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL